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A simulation of 2-D turbulence in a square region with periodic boundary conditions 
has been performed using a highly accurate approximation of the inviscid NavierStokes 
equations to which a modified viscosity has been added. A series of flow pictures show 
how a random initial vorticity distribution quickly assumes a stringlike pattern which 
persists as the flow simplifies into a few “cyclones” or “finite area vortex regions”. This 
trend towards well-defined large-scale structures can make it questionable if the 2-D flow 
should be described as “turbulent” and it casts some doubts on the concept of inertial 
range and the relevance of energy spectra. The change in appearance seems to be. associated 
with a buildup of phase correlations in the Fourier representation of the vorticity field. 
During this initial buildup, the energy spectrum seems to follow a P-law, but this behavior 
does not persist. If there is a power law for steady turbulence the results suggest that is 
more likely to be. a P-law. 

INTRODUCTION 

The Navier-Stokes equations for viscous, incompressible 2-D flow expressed in 
terms of streamfunction zj and vorticity w, are 
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These equations are studied numerically on a square region with periodic boundary 
conditions. Randomly generated initial conditions provide a simulation of two- 
dimensional turbulence. 

Burger’s equation 

has often been considered a natural one-dimensional model equation for turbulence 
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(see, for example, [21]). Equation (3) can be solved analytically and it is found that 
thin shocklike regions of width O(V) separate smooth regions in long-term solutions. 
The purpose of the present work is to produce a series of flow pictures to investagete 
whether the 2-D equations also show any characteristic pattern in the solution. 

Calculations similar to those presented here have been performed several times 
before using finite difference methods, e.g., [7, 12, 16, 171 or Fourier methods, e.g., 
12, 9, 121. After these original calculations the trend in more recent large-scale calcula- 
tions has been to increase the spatial resolution rather than the integration time. In 
this paper the emphasis is the opposite. A new spectral filtering method is used in an 
attempt to provide a realistic model with a comparatively small mesh. 

In some sequences of flow pictures we can follow the very organized physical 
structures which develop in the vorticity fields. These structures cast some doubt on 
the physical relevance of concepts like inertial range, energy spectrum, etc., which are 
based on the Fourier representation of the flow field. We study the energy spectrum 
mainly because extensive previous efforts have gone into theoretical predictions [13, 
15,221 and numerical estimates [7, 12, 16, 171 for it. The estimates for energy spectra 
presented here should not be considered as conclusive due to the limited resolution. 
However, they indicate that a power law for steady “turbulence,” if any exists, 
probably is closer to k+ than to k-S. 

NUMERICAL METHOD 

Equation (l), with the viscosity term left out, is approximated by the Fourier 
method. The viscosity is included in a separate step described below. The numerical 
properties of the Fourier (or pseudospectral) method, first developed by Kreiss and 
Oliger [14], have been analyzed for example in [8,19]. The method has been applied to 
2-D flow in a way much similar to the present work, by Orszag and others in [9, 121. 
However the conclusions drawn by them differ strongly from those presented here. 
We believe that the present method is good enough to provide results relevant to 
flow structures and possibly to the form of the energy spectrum. 

There are different ways to describe the idea of the Fourier method. One is to see it 
as a method to both obtain space derivatives of w (the variable advanced in time by 
Eq. (1)) and to perform multiplications like (a#/&) * (80/8y), etc. all in spaces where 
the operations are local. With the use of the FFT algorithm, we can efficiently trans- 
form mesh functions such as the discretized w from physical to Fourier space and 
back. In Fourier space, derivatives like &/ax and &J/$Y correspond to a single scalar 
multiplication of each mesh value and not to a convolution as in physical space. For 
physical products this situation is reversed and the factors are first brought to physical 
space before they are multiplied. In the present implementation new values of # at 
each time level together with its space derivatives, were also obtained by local opera- 
tions in Fourier space. It is probable that the much faster method of using a fast 
Poisson solver, based on the five-point approximation of (2), together with numerical 
differentiation also would have been an adequate way to approximate the #-derivatives 
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in (1). After the evaluation of the right-hand side of (1) in the way described above, w 
is brought to the next time level using leapfrog (central difference) time differencing. 

The Fourier method gives approximations with very high formal order of accuracy. 
It is, nevertheless, surprising that this method is useful since truncated Fourier series 
representation of discontinuous or otherwise nonsmooth functions can be quite 
inaccurate (e.g. the Gibbs phenomenon), in particular if used to approximate deri- 
vatives at the mesh points. However, the method has been shown to be very accurate 
for long-time integrations even in such cases. This must mean that, with appropriate 
time differencing, the large oscillatory spatial errors have canceled to a high order. 
The influence of a nonsmooth variable coefficient is discussed in [8]. According to 
recent results [lo], partially corrected leap-frog or Adams-Bashforth schemes may 
have a slight advantage over the conventional leap-frog scheme used here. 

In [8, 141 the resolution power of this Fourier approach is compared with classical 
finite difference approximations for a linear problem. (There is no practical experience 
indicating any significant difference for nonlinear cases.) Leap-frog in time together 
with second- and fourth-order methods in space is shown to require typically 20 and 
8 points, respectively per wavelength (the numbers depend on the desired accuracy, 
time interval, etc.) compared to 2 for the Fourier method. To obtain a certain final 
accuracy, the number of mesh points needed in each space dimension can be reduced 
in proportion to these numbers. Especially in problems with more than one space 
dimension, this leads to substantial savings in the computer time and high speed 
memory. Using classical finite difference methods, the problem described here would 
be beyond the capacity of all but possibly the very largest of presently existing com- 
puters. 

The computations described in this paper were carried out on the IBM 370/158 
computer at California Institute of Technology. Each time step for the 64 x 64-mesh 
required about 2 seconds of computer time (single precision arithmetic). 

TREATMENT OF THE VISCOSITY TERM 

In a turbulent flow at large Reynolds number, the scales of the large eddies and the 
finest structures differ by several orders of magnitude. By inertial range is meant a 
range of intermediate scales in which the direct influence of viscosity is assumed to 
play only a minor role. On a a uniform rectangular mesh with the order of 100 points 
on a side, the largest and smallest scales that can be resolved differ by one order of 
magnitude at most The scaling and mesh size are assumed to be such that variations 
of the order of the mesh size (and smaller) are rapidly damped by viscosity Thus the 
smallest wavenumbers which viscosity damps rapidly must correspond to length 
scales quite close to the largest features represented on the mesh The variation of 
viscous decay with wavenumber is rather slow (cf formula (5) below) In these 
circumstances the interval of wavenumbers in Fourier space where viscosity is impor- 
tant covers the entire computational range and no inertial range can be detected. This 
seems to be the reason why it was concluded in [12] that simulation of the present 
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kind cannot be used to obtain information about an inertial range, unless the mesh is 
significantly refined. In the present study we introduce viscous decay that varies 
rapidly, indeed discontinuously, with wavenumber and thus are able to detect what 
could be described as an inertial range while only employing a 64 x 64 net. 

In the calculations reported in [9, 121, the viscosity term was implemented by the 
use of an implicit difference scheme in physical space. It can also be implemented by 
repeated damping of the voriticity in Fourier space 

w(x, y, t) = C 1 B(k, , k, , t) ezni(k~-‘). 
k, k, 

(4) 

A correct damping is obtained if &(k, , k, , t) is multiplied by 

e-4n%(k,2+k,2) At 
(5) 

at intervals dt in time. For some of the calculations described below, this procedure 
has been used. With viscosity included in this way it is however very doubtful that one 
can observe an inertial range in calculations on a 64 x 64-mesh. 

In this paper, we try to circumvent this problem by reexamining the way viscosity 
is applied. In the one-diemensional Eq. (3), a change in v does not change the main 
flow picture, only the local steepness of the shock layer. In two dimensions, it was 
noticed in [9, 121 that the main flow picture was again very independent of the value 
of v. It seems to be mainly in controlling the local steepness in thin structures that v 
plays a role. It is then reasonable to ask if also the way it is applied might not affect 
the main structure, especially if the boundary of the region in which the viscosity acts 
can be made considerably sharper in Fourier space. This could leave an interval in 
Fourier space for an inertial range to develop. All wavenumbers higher than a certain 
limit are discarded (filtered) at regular intervals in time. Such elimination of high 
wavenumbers has been proposed before [20], but for a different purpose. Here it is 
used to model an energy sink rather than to eliminate “aliasing errors.” 

This idea of discarding high wavenumbers has some similarities in philosophy to 
subgrid modeling, which is being increasingly used. This technique is also based on a 
belief that the development of large scale structures do not essentially depend on the 
exact structure of the finest scales, but that a statistically correct model for these 
structures is sufficient. 

In the present calculations, both “proper” viscosity (applied by damping of w in 
Fourier space every 4 time steps) and sharp filtering (see below; elimination every 
60 time steps of all modes with wavenumbers 220) were used. Initial development of 
physical structures like stringy patterns and especially the large finite area vortex 
regions (FAVR) depend very little on this choice. The main difference is that with the 
second method, much less damping of energy and voritcity is needed in order to 
suppress the development of structures so small that their numerical resolution is in 
doubt. This reduced viscosity allows integration far beyond the time when otherwise 
fine structures would have been smoothed out. 

An energy spectrum E(k), k = 0, 1, 2 ,... can be introduced to express the total 
amount of kinetic energy in different frequency modes. For each value of k, a summa- 
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tion is made over all pairs of wavenumbers kl , k2 close to a radius k, say k - 3 < 
(k12 + kz2)lj2 < k + 4, in the Fourier representation of the velocity field. Some 
difficulties introduced by this definition are discussed in Appendix 1, where also an 
exact definition is given. 

NUMERICAL RESULTS 

Figures 1 to 15 show five series of flow pictures. For each flow situation which is 
illustrated, the top figure shows lines of constant vorticity and the bottom figure lines 
of constant streamfunction (i.e., streamlines). The lines for constant vorticity are 
continuous for negative values and dotted for positive values. To make the flow struc- 
tures more visible, the difference in vorticity between the positive equilines is three 
times the difference between the negative equilines. The direction of the flow along 
the streamlines has been marked. In the beginning of series 1 the time interval between 
different figures is so small that the movement of individual features can be followed. 
In series I to 3 viscosity was implemented by setting to zero the amplitude of all 
frequency components with wavenumbers k greater than 20 (for two consecutive time 
levels to fit with the leap-frog time differencing) at every 60 time steps. 

Series 1. Figures 1 to 7 and 17. The initial vorticity distribution was chosen to 
satisfy E(0) = 0, E(k) = constant/k3 for 1 < k < 8. E(k) = 0 for k > 8. (Some 
numerical values are given in Appendix 2.) All phases were randomly distributed in 
C--n, rr]. The flow is seen to rapidly change structure to a stringlike vorticity pattern 
while developing towards two opposite directed FVAR. The maximum vorticity in 
one of them settled to a value about 50 % bigger than the maximum value in the 
other. (E(0) remained zero to within rounding error fluctuations.) Figure 17 shows 
selected energy spectra just after the filtering of wavenumbers has been performed. 

Series 2. Figures 8 to 9 and 18 to 19. In the final state in series 1 (after 5220 time 
steps) all phases in the Fourier decomposition of w were randomly redistributed in 
[-n, ~1 without changing the magnitude of any component. Thus the energy spec- 
trum remained unchanged. A development much the same as the one for series 1 is 
seen. This is discussed further below. 

Series 3. Figures 10 to 13 and 20. The initial vorticity distribution satisfies 
E(0) = 0, E(k) = constant/k, 1 < k < 20, E(k) = 0, k > 20. The phases are ran- 
domly distributed. This spectrum corresponds to an equidistribution of vorticity 
among the wavenumber pairs kl , k, satisfying 0 < (k12 + k22)1/2 < 20.5. Although 
the structures initially are much smaller than in series 1, the end state is similar with 
two opposite directed large-scale FAVR. 

Other calculations performed (but not displayed by a sequence of flow pictures) 
included use of “proper” viscosity (series 4) and a test of the sensitivity of the solution 
to perturbations. 

Normal viscosity (using v((a2w/ax2) + (a2w/ay2)) in Eq. (1)) was applied by damping 
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FIG. 1. 0 time steps; Series 1. 



A NUMERICAL STUDY OF 2-D TURBULENCE 7 

FIG. 2. 60 time steps. Series 1. 
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FIG. 3. 180 time steps; Series 1. 
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FIG. 4. 360 time steps; Series 1. 
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FIG. 5. 900 time steps; Series 1. 
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FIG. 6. 3060 time steps; Series 1. 
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FIG. 7. 5220 time steps; Series 1 



A NUMERICAL STUDY OF 2-D TURBULENCE 13 

,,/ ..-..- -=” ‘. :’ .- ~---.--. : -L.--’ 

b 3 
( 
/ 

FIG. 8. 0 time steps; Series 2. 
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FIG. 9. 3060 time steps; Series 2. 
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FIG. 10. 0 time steps; Series 3. 
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FIG. 11. 540 time steps; Series 3. 
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FIG. 12. 4320 time steps; Series 3. 
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FIG. 13. 7020 time steps; Series 3. 
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FIG. 15. 3060 time steps; Series 5. 
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FIG. lk. Schematic development of energy spectrum. 
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FIG. 17. Energy spectra in series 1. 

of the Fourier coefficients for the vorticity (on the last two time levels) every four time 
steps. The 4G%dt in formula (5) was 0.00015 (see Appendix 2 for an interpretation of 
this number). This value was found to be the lowest value possible that prevented 
structures from becoming too small for the mesh to resolve. This dissipation acts over 
a wide range of frequency components, including the low ones, which contain large 
amounts of energy. In these runs, the flow again rapidly developed to two FAVR but 
with less fine structure and with an energy spectrum decaying more rapidly than k-4, 
especially for high wavenumbers. This probably indicates that the whole calculation 
was within the viscous range and that there was nothing which possibly could be 
described as an inertial range. 

A test was performed (using the sharp filtering method) with small scales structures 
superposed on the initial state of series 1. Even fine structures in later flow pictures 
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FIG. 18. Energy spectra in series 2; continued in Fig. 19. 

FIG. 19. Energy spectra in series 2. continuation from Fig. 18. 
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FIG. 20. Energy spectra in series 3. 

remained virtually unchanged between the two runs. This indicates that the 2-D 
Navier-Stokes equations form a well-conditioned problem with respect to small-scale 
perturbations. 

A further series of calculations were carried out for a case with an initial spectrum 
E(k) = 0, k = 1,2, E(k) = constant/P for 3 < k < 20 and E(k) = 0, k > 20 
(sharp filtering method). The energy in wavenumber one, which is dominant in a 
state with two FAVR was initially zero. The purpose was to see if a state with more 
than two FAVR would be reached. However the flow development followed closely 
the one in series 3. The different zones of positive and negative vorticity which first 
appeared gradually joined up to form two FAVR. 

The time development of the total energy and enstrophy (mean square vorticity) in 
series 1 to 4 is shown in Figs. 22 and 23. (The units on the vertical axis in each figure 
are the same for the four curves but otherwise arbitrary.) 

Cascade arguments for 3-D turbulence predict that both energy and enstrophy flow 
from low to high wavenumbers. In 2-D turbulence most energy is dissipated at low 
wavenumbers and, if a cascade argument is still relevant, it would imply that energy 
and enstrophy flow in opposite directions. Figures 22 and 23 seem to be consistent 
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FIG. 21. Energy spectra in series 5. 

- Series I 
---- Sari*s 2 

-.-.- swi*r 3 

------- srries 4 

20 ---- --_____ 
------ --_______ 

L,~l.,l.,.,,,.,,,..,,,.,.,,,,,,.,..,.., 
o ‘esQ* $6 

c 
oo9cJoo ‘V 

90 
‘as ‘es0 “oeo “coo “PO ‘Q. %zo *>eo Qio =ero Time s,sps 

FIG. 22. Total energy as function of time. 

with this description. ‘In all cases the original energy and enstrophy were confined to 
the first 20 wavenumbers. The time independence of the total energy using the sharp 
filtering method corresponds to the fact that no energy penetrated towards higher 
wavenumbers. The enstrophy, on the other hand, is decaying in all cases. 
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FIG. 23. Total enstrophy as function of time. 

Ideally we would wish to use infinitely many wavenumbers and “proper” viscosity 
with coefficient Y decreasing to zero. As discussed above this is not possible to achieve 
with the use of a finite grid allowing only a very limited resolution. What a model for 
subgrid structures should achieve is to make the components for low wavenumbers 
develop as if the higher ones were present and correctly treated. The conservation of 
the total energy in the lowest 20 wavenumbers is therefore in agreement with the 
physical problem. (The numerical scheme in itself is not energy conserving. The 
conservation can be seen as a test of accuracy.) With the use of “proper” viscosity, a 
strong decay of energy seems to be inevitable. 

The sharp filtering method contains two parameters kcut and n, . They describe at 
which wavenumber the cutoff was performed and how often it was done. One more 
parameter enters because of a special property of leap-frog time differencing. The 
solution at every second time step may separate from the other time steps. This effect 
can be suppressed by coupling the scheme together at every PIN time steps. (We can, for 
example, introduce time levels t + k/2 and t + (3k/2) as the average of levels t, 
t + k, and t + k, t + UC, respectively. The scheme can be restarted from the two new 
levels.) In series 1 to 3 we used kcut = 20, n, = 60, and n2 = 60. It is crucial for our 
model of the energy sink that changes in these numbers do not significantly change 
any flow characteristics. In separate test runs all the three parameters were varied both 
individually and together to test their possible influence on the solution. Changing 
k cut from 20 to 25 only extended the spectrum to five more wavenumbers. 
Components just before the original cutoff, i.e., say 18 and 19 did not virtually change 
at all. The time interval between these filterings, Q , was changed from 60 to 6. In 
contrast to what one might guess at first, this slightly increased the amounts of high 
frequency components. Otherwise the nature of the spectrum did not change. Finally 
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n2 was changed from 60 to 30 with no noticable effect. This indicates that the separa- 
tion of every second time level was satisfactorily suppressed already using n2 = 60. 
Figures 15 and 21 (series 5) show a repetition of the run in series 1 up to time level 
3060 with kcut = 25, fil = 6, and n2 = 30 (instead of kcut = 20, IZ~ = n2 = 60). The 
flow Fig. 15 show little difference to Fig. 6 and the corresponding spectra, slightly 
higher for higher wavenumbers, again agree very well with the schematical description 
in Fig. 16. 

CONCLUSIONS 

The development of the spectrum in series 1 can be illustrated schematically as 
shown in Fig. 16. During the initial stages, before the phases have had time to reach 
natural correlations, we find that the energy spectrum fairly rapidly adapts to a third 
power law. However, as FAVR and phase correlations develop, it seems to approach 
something closer to a fourth power law. The development of FAVR in two- 
dimensional flow was predicted from different approaches by Onsager [18] and 
Batchelor [l]. Saffman [22] showed that such a structure would lead to a k-4 spectrum 
if the boundaries between the FAVR had steep vorticity gradients. However, the flow 
pictures in the present calculations do not seem to confirm this assumption. Energy 
spectra decaying faster than k-3 have actually been obtained numerically several 
times but it appears that most authors have discarded such results as due to various 
forms of errors since they did not agree with the expected result. However in[7] 
convergence to a fourth power law is reported. 

Series 2 serves to test the influence of phase correlations. All correlations in the 
final state in series 1 were destroyed by randomizing all phases but keeping all magni- 
tudes the same. Without the proper phase correlations, an “unnatural” burst of high 
frequency components gets initially generated. This brings the spectrum from fourth 
to third power during the first 500 to 1000 time steps. After that the development in 
series 1 (and convergence to fourth power) seems to be repeated. 

This experiment illustrates one difficulty in the theoretical study of turbulence by 
arguments based only on magnitudes of Fourier components. 

The development in series 3 can be compared to the results on inviscid flow reported 
by Seyler et al. in [23]. They consider the plane nonviscous Navier-Stokes equations 
in a Fourier space truncated to a finite number of wavenumbers. The equilibrium 
arguments of statistical mechanics, for a system with a finite number of degrees of 
freedom, predicts for this case an energy spectrum. 

W) - kl(a + Pk3>. (6) 

Here, CL and p are constants which can be determined from the mean square energy 
and vorticity (both conserved). Numerical results in [23] show good agreement with 
(6). The initial state in series 3 fits (6) with LX = 0. Nevertheless, the solution deviates 
immediately from this distribution to follow the patterns discussed above for series 1 
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and 2. It would seem that a nonvisous formulation with a finite number of degrees of 
freedom describes a process fundamentally different from two-dimensional turbulence. 

The cores of vorticity in series 3 might be somewhat sharper than they would have 
been with the use of normal viscosity. A calculation with higher resolution could be 
the best way to settle this question. 

APPENDIX 

1. Dejinition of Energy Spectrum 

Transforming w to Fourier space gives a 64 x 64 array of Fourier coefficients with 
wavenumbers up to 32 in each space direction 

w(x, y) = C C d(k, , k,) ezni(klz+kz’) I kl I , I k2 I G 32. (7) 
k, kp 

The total kinetic energy E can be evaluated as 

E = ; 11 j B j2/(k’)2 
k, kz 

where (IQ2 = k12 + k22. 
The most natural way to define an energy spectrum E(k), k = 0, 1,2,... would 

seem to be 

E(k) = 4 ,k ;,<+ I A 12/W2 I- \ 
(9) 

satisfying 

E = f E(k). (10) 
k=O 

The double sum in (8) has in (10) been reordered into summation over circular rings 
around the origin. The number of integral lattice points in these different circular 
rings, i.e., the number of terms in (9), approach asymptotically 2nk, but the number 
fluctuates considerably and seemingly randomly for small values of k. Even if B is a 
smooth function of k, and k, , this will make E(k) fluctuate irregular1y.l Since E(k) 
is used for graphic illustrations, 2 it was instead defined as the average value of 
rr 1 C;, j2/k’ over all k’ such that Ik’ - k / < +. 

1 The fluctuations this effect causes appear to be correlated to the fluctuations in the energy spectra 
in [12]. 

p The E(k) displayed in Figs. 17 to 21 differ from this definition by a constant factor, i.e., to a 
translation in the log-log diagrams. 
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2. Time and Space Units, Magnitude of Solution 

The periodic region in space was assumed to be a unit square. The numerical space 
step was l/64 and the time step was l/l0 in all the calculations (i.e., the leap-frog time 
differences used values l/5 time unit apart at each time step). Since the equations are 
nonlinear, the time unit is connected to the magnitude of the solution. (If w and $ are 
multiplied by a scalar, they will again satisfy (1) and (2) if we adjust v and the time 
unit.) The equilines for the streamfunction in Figs. 1 to 15 differ by 0.001. They differ 
by 0.05 for negative vorticity and 0.15 for positive vorticity with the exception of 
Figs. 10 and 11 where the differences are four times larger. The zero equiline is marked 
with the letter H for the streamfunction. The value 0.00015 for 4n2vL1t in the runs with 
“proper” viscosity corresponds to v ci 1O-5 (At = 0.4) since the viscosity was applied 
every four time steps. 

3. Implementation of the Fast Fourier Transforms 

The Fast Fourier transform algorithm (FFT) [3,4, 61 has found wide-spread use 
in a large number of fields during the last ten years. It is described most naturally for 
the case of complex transforms. When general real transforms or real symmetric and 
antisymmetric transforms are needed, complex transforms over half or a quarter of 
the number of points can be used in connection with some simple additional algo- 
rithms [5]. With the use of such techniques, the only transform needed for the present 
work was a transform over 16 complex points. 

In most descriptions of the FFT algorithm, an operation count of C,N log N is 
quoted (N is the number of points; the constant C, depends on what is counted). 
Comparisons with classical algorithms, C, . N2, turn out very advantageous if N is 
large. The potential of FFT for N small is seldom fully recognized and not well 
described by the asymptotic formula for N large. For this reason, the present imple- 
mentation is briefly described. It is related but not identical to the usual implementa- 
tions for N large. 

We write the linear transform from Fourier to physical space. 

X(O) wo . . . )“O X(1) 
[;I 

$,(P $ )V 

wo + w2 w3 . . . w15 

X(2) wo w2 ,+%4 wfJ . . . $,$,30 

X(3) 
= l/NV 

),‘O pV3 W6 )&a9 . . . ,,‘45 (11) 

X(-l 5) w O d5 ),$‘30 J,V45 . . . $V225 

where w = e2”i116. 
We want to perform the matrix times vector multiplication in (11) as fast as possible. 

One way to understand the Fast Fourier transform method is to note that the matrix 
can be factorized into a product of sparse matrices. One of several systematic 
approaches is given in [l I]. The factorization we have used for the matrix in Eq. (11) 
is W,, = Fl . F2 . F3 where 
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1 1 1 1 

1 i -1 - 

1 -1 1 -1 

l-i-l i 

1 1 1 I 

1 i-l -i 

1 -1 1 --I 

1 -i-l i 

1 1 1 1 

1 i-l -i 

1 -1 1 -1 

l-i-l i 

1 1 1 1 

1 i-l -i 

1 -1 1 -1 

1 --i-l i. 

(13) 
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F3 = 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

-- 

1 
1 

1 
1 

i 
i 

i 
i 

-1 
-1 

-1 
-1 

-i 
-i 

-i 
-i 

_- 

-- 

-- 

1 
1 

1 
1 

-1 
-1 

-1 
-1 

1 
1 

1 
1 

-1 
-1 

-1 
-1 

-- 

-- 

1 
1 

1 
1 

-i 
-i 

-i 
-i 

-1 
-1 

-1 
-1 

i 
i 

i 
1. 

In this way the full transform requires only 8 complex multiplications (or the equiva- 
lent of 6 if we use that w2 and ws have real and imaginary parts equal). This should be 
compared to 256 complex multiplications in the most straightforward implementation 
of (11). 
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